
Aeta Cryst. (1979). A35, 849-851 

G e n e r a l i z e d  S c a t t e r i n g  F a c t o r s  a n d  G e n e r a l i z e d  F o u r i e r  T r a n s f o r m s  

BY JOHN AVERY AND PER-JOHAN ORMEN 
Department o f  Physical Chemistry, H. C. Orsted Institute, University o f  Copenhagen, 2100 Copenhagen, 

Denmark 

(Received 12 April 1979; accepted 15 May 1979) 

849 

A b s t r a c t  

A method is proposed for evaluating generalized X-ray 
scattering factors (Fourier transforms of products of 
atomic orbitals) in the two-center case with Slater-type 
orbitals. This method is especially appropriate if one of 
the Slater exponents is considerably larger than the 
other. 

Introduct ion  

In a previous paper (Avery, 1978), an approximate 
method was proposed for calculating the generalized 
scattering factor 

X.v(S)__~ f d 3 x e x p ( i S . x ) x u ( x - -  a)x~(x-- b ) (1) 

in the two-center case where Zu and X, are Slater-type 
atomic orbitals (see also Harris & Michels, 1967; 
Avery, 1975; Stewart, 1969; Monkhorst  & Harris, 
1972; Graovac,  Monkhorst  & Zivkovic, 1973; Avery 
& Watson, 1977). In the present paper, an alternative 
method will be discussed. This method is especially 
appropriate in the special case where one of the Slater 
exponents is much larger than the other. 

Suppose, for example, that Zu and X~ are ls  Slater- 
type atomic orbitals located on different centers, so that 

Z, = Nl exp(--~'  Ix--  al), 

y., = N z exp (--~lx--  bl), 
(2) 

where if' >> ~ and where N 1 and N 2 a r e  normalizing 
constants. Since X~, is much more sharply localized in 
space than Zv, it follows that the main contribution to 
the generalized scattering factor X,, v will come from the 
region in which X, is localized, i.e. the region near x = 
a. Therefore, we can approximate X , ,  by expanding Xv 
about the point x = a. 

Let 

then 

E x p a n s i o n  o f  X, about  x - -  a 

R = b - - a ,  (3) 

Ix - -b l - - -  I x - - a - - R I  (4) 
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and, in our illustrative example, 

X~(S )  

= N l N 2 exp (iS. a) f d 3 x exp {iS. (x - a) 

- -  ( ' l x - -  al --  ( I x - -  a - -  RI} 

= N I N 2 exp (iS. a) f d 3 x exp (iS. x 

- - ~ ' l x l -  ~ l x - -  RI).  

We now expand Ix - R I in the series 

where 

I x - - R I = R  • Ql(Y) , 
i=O 

x . R  
~1~ - - - - C O S  0, 

rR 

r =  Ixl, 

and 

Qo= 1 

Q1 = --Y 

Q2 = ½(1 - ~2) 

Q3 = ½(Y- y3) 

Q4 = ~ ( - 1  + 6 : -  5y 4) 

Q5 = i ( - 3 y  + 10~ - 7y5), etc. 

and, in general, 

1 
Qi(~) - - -  

21-- 1 

(5) 

(6) 

(7) 

(8) 

exp ( - Q  x -  RI) 

( oo (~_) l ) 
= exp (-(_,R + ~r?,) exp ~R X Ql(?') 

l=2 
= exp (--(_.,R + •. x) exp ta2 r 2 + a3 r 3 + a4 r4 + ...} 
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In (9), the P [ s  are Legendre polynomials. From (6) and 
(8) we have 

{Pt-2(~')- Pt(Y)} (l > 2). (9) 
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f 
=exp( - -~f l  + ~ . x )  l1 + ( a  z r  z + a ar  3 + .. e~ 

k 
1 

+ 2--~. (a2 rz + a3 r3 + ' " ) 2  

1 / 
+ _ _  (a 2r  2 + a3 r 3 + ...)3 + ... 

3! 

= e x p ( - Q ~ + ~ : . x )  { l + a  2r  2 + a  3r  3 
/ 

where 

~ = - - R  (11) 
R 

and 

Qt(~) (12) 
at = ~ R t-  l 

Collecting terms in the various Legendre polynomials, 
we obtain 

O(3 

e x p ( - ~ l x - R I )  = e x p ( - ~  + ~.x) y Pt(?)gl(r), (13) 
t = 0  

where 

= - - - -  + ~  + . . .  
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From this it follows that 

oO oO 

~ P t (1 )g t ( r )=  ~ gt(r) = 1 
t = O  t = O  

and 

oO O0 

~ Pt( - -1)gt (r )  = Z (--1) tgt(r) = 1, 
1 = 0  1 = 0  

g ~ -  5 + ~ ( ~ ) ~  + "'" 

g 2  = -~- - + + . . .  

g 3  Y + 

g 4 = - ~  -- 1 +  + . . .  

+ . . .  

~R ( 2 ~[ r ~ 5 
(14) 

We have tested this expansion numerically, and find 
that for ~ < 10, the terms shown in (14) are sufficient 
to give five-figure accuracy for r / R  < O. I. 

In the range 0.1 < ( r / R )  < 0.2, the terms shown in 
(14) give three- or four-figure accuracy. Greater 
precision could of course be obtained by extending the 
expansion of higher powers of ( r / R )  I. Notice that when 
y = + 1, QI(~) = 0 for l ___ 2; and therefore when Y = 
+ 1, we have the exact relationship: 

exp (--~lx -- RI) = exp (--Q~ + ~.x). (15) 

(16) 

so that 

0O o o  

~ g t ( r ) =  1 and 
l =  0,  2, 4 . . . .  l =  1, 3, 5 . . . .  

Substituting (13)into (5), we have 

S,v(S)  = N~ N 2 exp ( i S . a -  O~) 

gt(r) = 0. (17) 

x f d3 xexp{i (S  - i~ : ) . x -  ~'r} 

oo x . R  

Generalized Fourier transforms 

From (18), we see that if we let 

~j = S -  in, (19) 

the integral will resemble a Fourier transform, except 
that the scattering vector { will be complex. Therefore it 
will be helpful in evaluating integrals of this type if we 
can generalize Fourier transform techniques to include 
cases where the scattering vector is complex. One can 
show by analytic continuation that the identity 

exp(i~.x) = ~ it(21 + 1)P t j t (~r)  (20) 
/ = 0  

is valid when ~ is complex. In (20), 

¢ =  (¢ .01 /2=  {(S -- iK). (S- -  in)} vz, (21) 

where the j t ' s  are spherical Bessel functions of order 1, 
and the Pt's  are Legendre polynomials. It does not 
matter which of the two values of the square root is 
chosen for ¢, since the phase factor cancels out of the 
expansion in (20). Substituting (20) into (18), and 
making use of the identity 

.f d f2Pl  PI' - 21 + 1 3n, Pt , 

(22) 

we obtain for the generalized scattering factor of (18): 
X,v(S ) = 4~zN~ N 2 exp (iS. a -- (.jR) 

x ~. i I Pt dr  r 2 gl (r) j t (~r)e-Vr.  (23) 
l = O  
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The functions gt(r) which appear in (23) are expressed 
in terms of powers of r /R  by (14). Therefore, X,~,(S) 
can be expressed in terms of radial integrals of the 
form: 

oo 
Jn,t -- f dr rnjl(~r)e -g'r. (24) 

0 

These integrals are easy to evaluate (see Stewart, 1969; 
Harris, 1973; Avery & Cook, 1974; Avery & Watson, 
1977). By integration one obtains: 

1 
G . o -  ~2+ ~,2 

2£' 
Y2, o = (~2+ ~,2)2 (25) 

Xu~(S) = 4~zN~ N 2 exp (iS. a -- (~R) 

~ J40+ J60+ x 2.0 3R ' 1 - ~  ' "'" 

+ ~ J5 i + J7 1 + + etc. 
¢R ' ~ - ~ '  " . . . . . .  

(27) 

In applying this method, it should be remembered that 

~ 2 =  S 2 - -  ~2__ 2i ~ (S .R)  (28) 
R 

is a complex number and that ~ is also complex. 

We thank Professor R. F. Stewart, Dr E. L. Mehler 
and Lektor L.-E. Lundberg for helpful discussions. 

and the integrals Jn,l with higher values of n and l are 
obtained from the recursion relations: 

L+,,o \¢2 + ~,,} . - 

Jr+2 = ~' ( 2v + 2 1 J ~ + l  v 
, \ ~ 2  + ~,21 , 

1 
J u + l , v -  ~2 + ~,2 {2g~ ' J~  

- -  (It  + v ) ( g - -  v - -  1)J._~,.}.  (26) 

In terms of these integrals, the generalized scattering 
factor of our example becomes: 
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